Training course: All About Clinical Trials

How to interpret clinical trial data – Examples from clinical trials

Sven Wassmann, MD, PhD, FESC

Munich, Germany

Declaration of Conflict of Interest

The existence of potential conflicts of interest does not necessarily indicate a bias. However it is our ethical obligation to inform organisers and participants so that they are made aware of any relationship that might cause unintentional bias. A potential conflict of interest may arise from various relationships, past or present, such as employment, consultancy, investments and stock ownerships, funding for research, family relationship etc.

 $\hfill \square$ I have no potential conflict of interest to report

X I have the following potential conflict(s) of interest to report

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports:	No
Receipt of honoraria or consultation fees:	Boehringer Ingelheim, Daiichi Sankyo,
	AstraZeneca, Pfizer, Apontis
Participation in a company sponsored speaker's	Amgen, AstraZeneca, Berlin Chemie,
bureau:	Bristol Myers Squibb, Boehringer
	Ingelheim, Daiichi Sankyo, Merck Sharp
	Dohme, Novartis, Pfizer
Stock shareholder:	No
Spouse/partner:	No
Other support (please specify):	No

What do you have to know from the trial?

• WHY

WHO

HOW

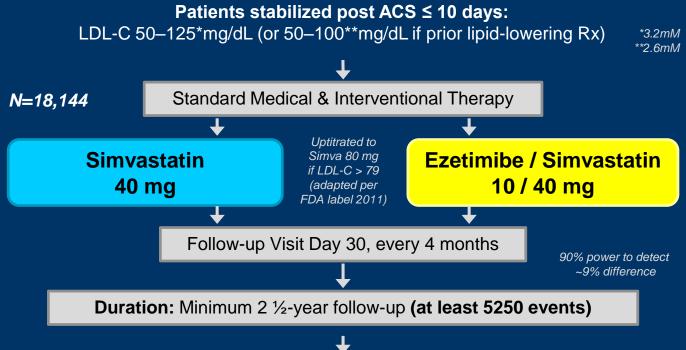
WHY — Goals / Hypothesis

IMPROVE-IT

First large trial evaluating clinical efficacy of combination EZ/Simva vs. simvastatin (i.e., the addition of ezetimibe to statin therapy):

- Does lowering LDL-C with the non-statin agent ezetimibe reduce cardiac events?
- "Is (Even) Lower (Even) Better?" (estimated mean LDL-C ~50 vs. 65mg/dL)
- Safety of ezetimibe

WHO — Patient Population


Inclusion Criteria:

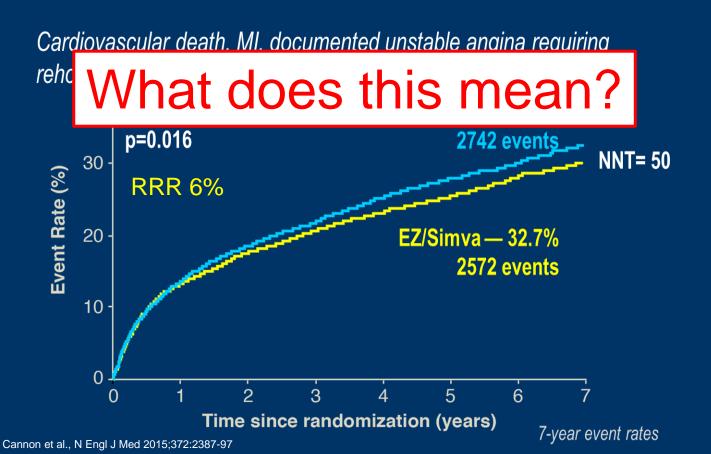
- ➤ Hospitalization for STEMI, NSTEMI/UA < 10 days</p>
- Age ≥ 50 years, and ≥ 1 high-risk feature:
 - New ST chg, + troponin, DM, prior MI, PAD, cerebrovasc, prior CABG > 3 years, multivessel CAD
- LDL-C 50-125 mg/dL (50-100 mg/dL if prior lipidlowering Rx)

Major Exclusion Criteria:

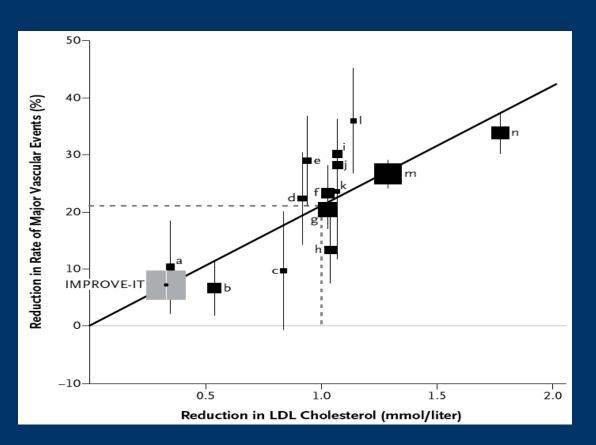
- CABG for treatment of qualifying ACS
- Current statin Rx more potent than simva 40mg
- > Creat CI < 30mL/min, active liver disease

HOW — Study Design

Primary Endpoint: CV death, MI, hospital admission for UA, coronary revascularization (≥ 30 days after randomization), or stroke

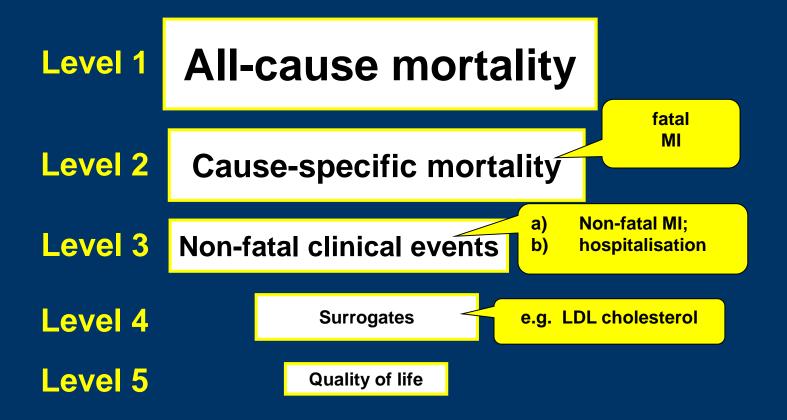

Baseline Characteristics

	Simvastatin (N=9077) %	EZ/Simva (N=9067) %
Age (years)	64	64
Female	24	25
Diabetes	27	27
MI prior to index ACS	21	21
STEMI / NSTEMI / UA	29 / 47 / 24	29 / 47 / 24
Days post ACS to rand (IQR)	5 (3, 8)	5 (3, 8)
Cath / PCI for ACS event	88 / 70	88 / 70
Prior lipid Rx	35	36
LDL-C at ACS event (mg/dL, IQR)	95 (79, 110)	95 (79,110)

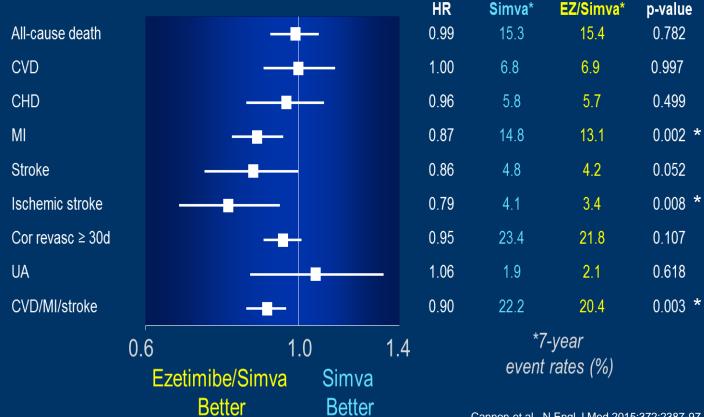

LDL-C and Lipid Changes

Primary Endpoint — ITT

Primary Endpoint — Interpretation

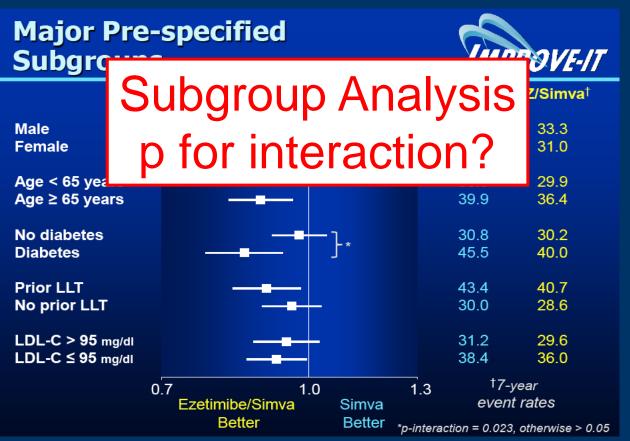


Primary and 3 Prespecified Secondary Endpoints — ITT



"Levels" of Endpoints

Individual Cardiovascular Endpoints and CVD/MI/Stroke

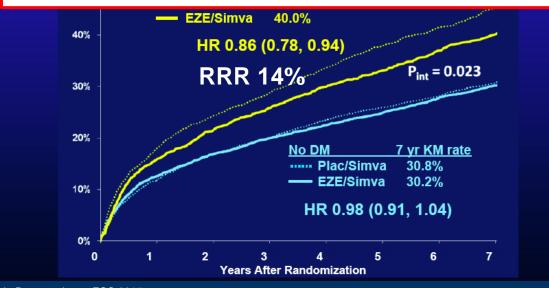


Cannon et al., N Engl J Med 2015;372:2387-97

Validity of Subgroup Analysis - Rule of 4 P's

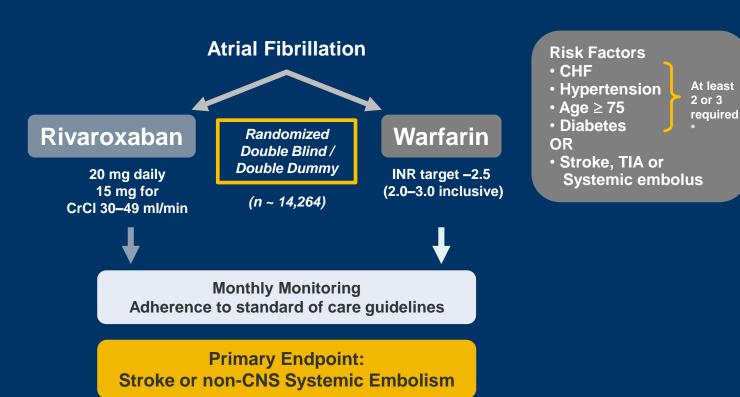
- Prespecified
- Powered
- Plausible
- Practically relevant

Subgroup Analysis


Subgroup Analysis

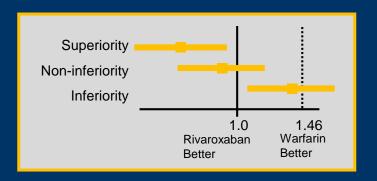
4.933 (27%) pts with Diabetes

Primary Endpoint — ITT



What does this mean?

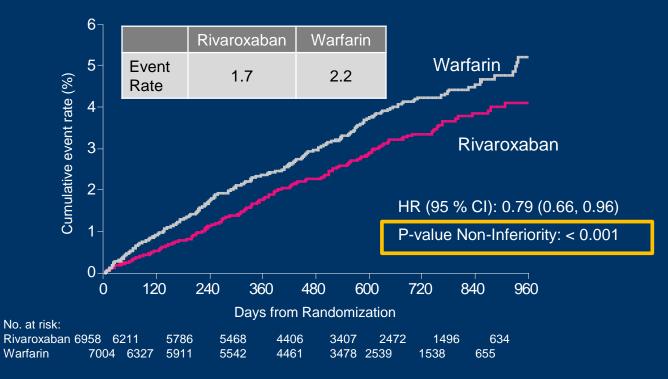
Study Design


^{*} Enrollment of patients without prior Stroke, TIA or systemic embolism and only 2 factors capped at 10 %

Statistical Methodologies

▶ Sample Size

- Warfarin event rate ~2.3
- Type 1 error 0.05 (2-sided)
- 405 events; > 95 % power
- ~14,000 patients

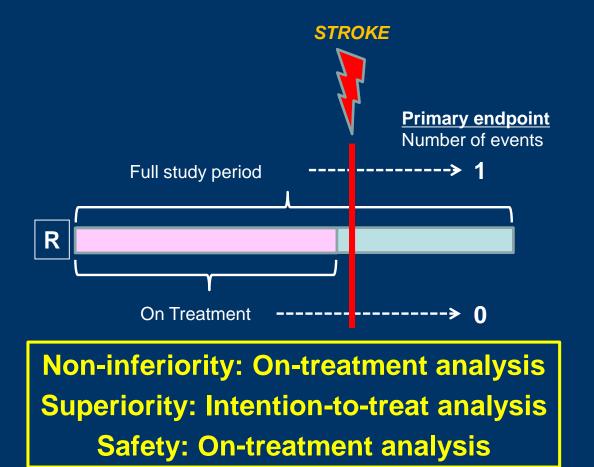


- ▶ Primary Efficacy Evaluation: Stroke or non-CNS Embolism
 - Non-Inferiority: Protocol compliant on treatment
 - Superiority: On Treatment and then by Intention-to-Treat
- ► Primary Safety Evaluation:

Major or non-Major Clinically Relevant Bleeding

Primary Efficacy Outcome Stroke and non-CNS Embolism

Event Rates are per 100 patient-years
Based on Protocol Compliant on Treatment Population


Primary Efficacy Outcome Stroke and non-CNS Embolism

Event Rates are per 100 patient-years
Based on Safety on Treatment or Intention-to-Treat thru
Site Notification populations

"Full study period" vs. "On treatment period"

Atrial Fibrillation with at Least One Additional Risk Factor for Stroke

Inclusion risk factors

- Age ≥ 75 years
- Prior stroke, TIA, or SE
- HF or LVEF ≤ 40%
- Diabetes mellitus
- Hypertension

Randomize
double blind,
double dummy
(n = 18,201)

Major exclusion criteria

- Mechanical prosthetic valve
- Severe renal insufficiency
- Need for aspirin plus thienopyridine

Apixaban 5 mg oral twice daily (2.5 mg BID in selected patients)

Warfarin (target INR 2-3)

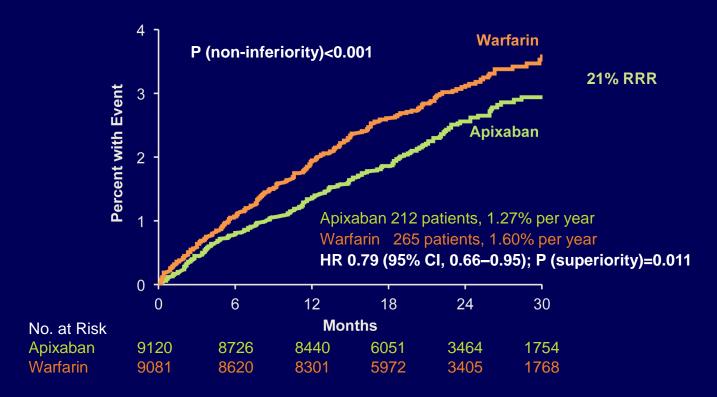
Warfarin/warfarin placebo adjusted by INR/sham INR based on encrypted point-of-care testing device

Primary outcome: stroke or systemic embolism

Hierarchical testing: non-inferiority for primary outcome, superiority for primary outcome, major bleeding, death

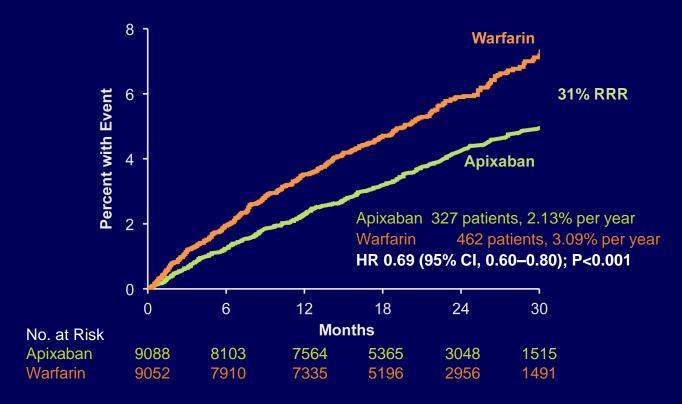
Objectives and Statistics

To control the overall type I error, a pre-specified hierarchical sequential testing was performed.


- The primary outcome (stroke or systemic embolism) for noninferiority (upper limit of 95% CI < 1.38 and upper limit of 99% CI < 1.44)
- 2. If met, then the primary outcome was tested for superiority
- If met, then major bleeding was tested for superiority
- 4. If met, then all-cause mortality was tested for superiority

Primary Outcome

Stroke (ischemic or hemorrhagic) or systemic embolism



Major Bleeding

ISTH definition

Atrial Fibrillation with at Least One Additional Risk Factor for Stroke

Inclusion risk factors

- Age ≥ 75 years
- Prior stroke, TIA, or SE
- HF or LVEF ≤ 40%
- Diabetes mellitus
- Hypertension

Randomize
double blind,
double dummy
(n = 18,201)

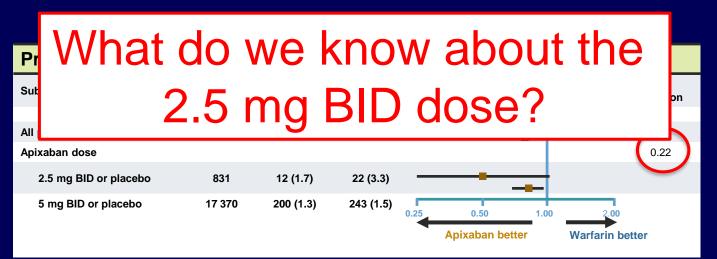
Major exclusion criteria

- Mechanical prosthetic valve
- Severe renal insufficiency
- Need for aspirin plus thienopyridine

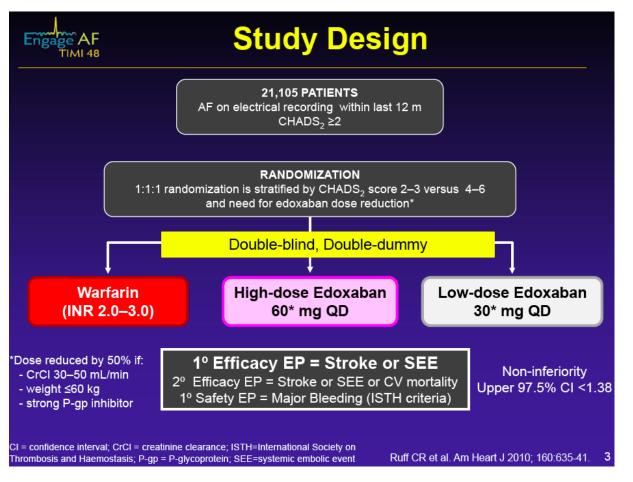
Apixaban 5 mg oral twice daily (2.5 mg BID in selected patients)

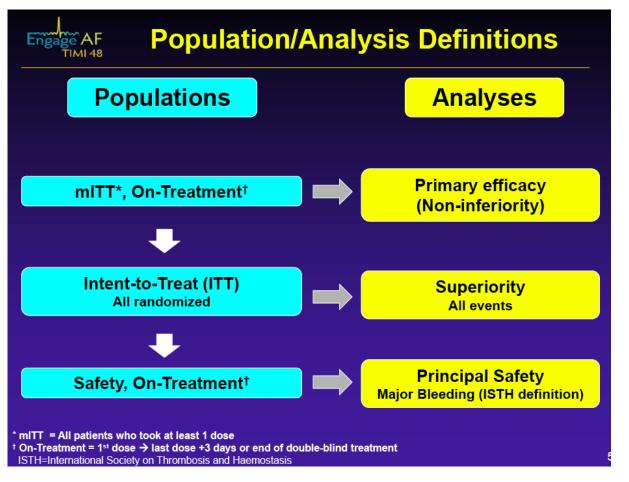
Warfarin (target INR 2-3)

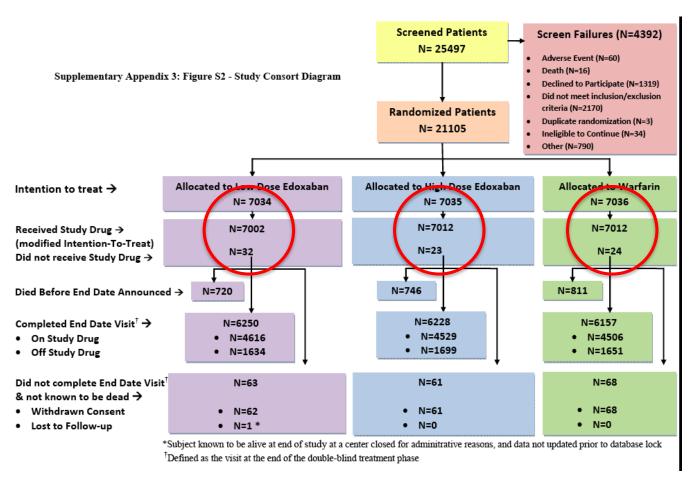
Warfarin/warfarin placebo adjusted by INR/sham INR based on encrypted point-of-care testing device

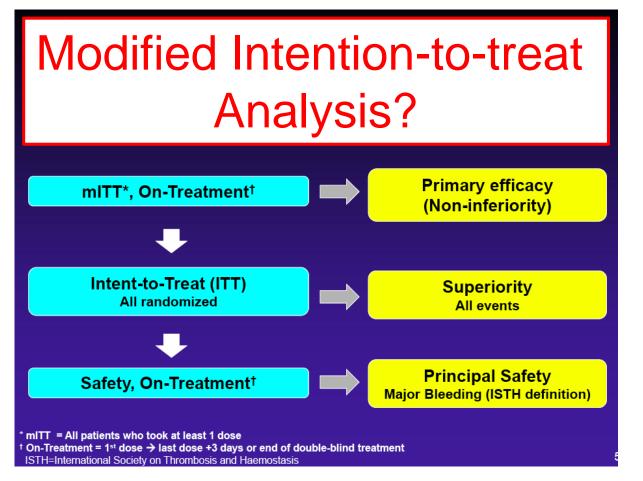

Primary outcome: stroke or systemic embolism

Hierarchical testing: non-inferiority for primary outcome, superiority for primary outcome, major bleeding, death

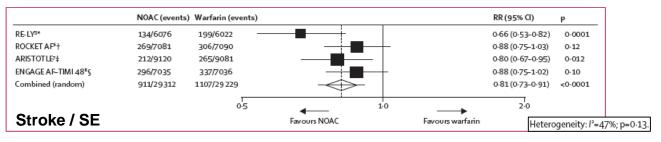


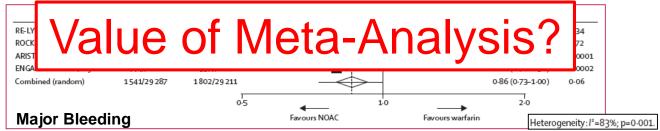

ARISTOTLE: 5 mg BID versus 2.5 mg BID Dose

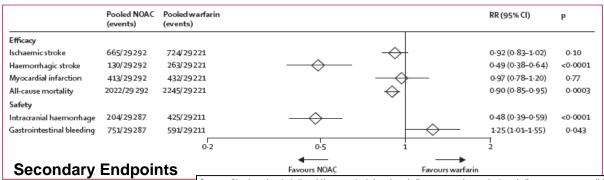



Major bleeding (secondary endpoint)

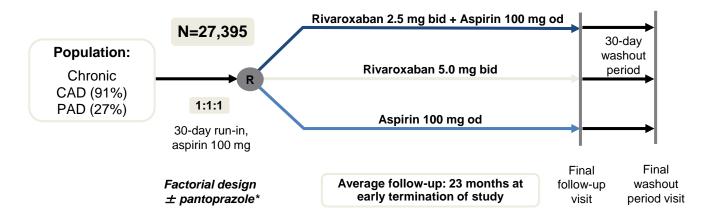
major biodanig (occordary chaponit)						
Subgroup	Number of patients	Apixaban	Warfarin	Hazard Ratio (95	%=(:1) '	for nteraction
Number of events (%/y.)						
All patients	18 140	327 (2.13)	462 (3.09)			
Apixaban dose						0.21
2.5 mg BID or placebo	826	20 (3.3)	37 (6.7)			
5 mg BID or placebo	17 314	307 (2.1)	425 (3.0)			
				0.25 0.50 1	.00 2.00	
				Apixaban better	Warfarin bet	ter







Atrial Fibrillation Trials with NOAC vs Warfarin: Meta-Analysis



Data are n/N, unless otherwise indicated. Heterogeneity: ischaemic stroke | 232%, p=0.22; haemorrhagic stroke | 234%, p=0.21; myocardial infarction | 248%, p=0.13; all-cause mortality | 20%, p=0.81; intracranial haemorrhage | 232%, p=0.22; gastrointestinal bleeding | 274%, p=0.009, NOAC=new oral anticoagulant.

COMPASS: Anti-Xa and/or Aspirin in Patients with Chronic CAD and/or PAD

Objective: To determine the efficacy and safety of rivaroxaban, vascular dose of rivaroxaban plus aspirin or aspirin alone for reducing the risk of MI, stroke and cardiovascular death in CAD or PAD

Antithrombotic investigations* were stopped 1 year ahead of expectations in Feb 2017 due to overwhelming efficacy in the rivaroxaban 2.5 mg bid + aspirin arm

^{*}Patients who were not receiving a proton pump inhibitor (PPI) were randomized to pantoprazole or placebo (partial factorial design); the PPI pantoprazole component of the study is continuing; data will be communicated once complete

^{1.} Eikelboom JW et al. N Engl J Med 2017; DOI: 10.1056/NEJMoa1709118;

^{2.} Bosch J et al. Can J Cardiol 2017;33(8):1027-1035

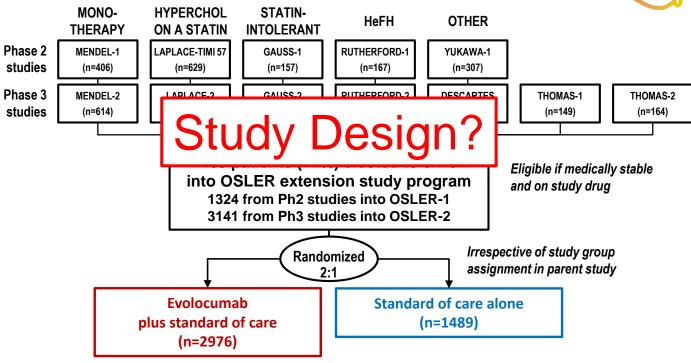
COMPASS: Primary Endpoint and Components

CV Death significantly lower?

Outcomes, n (%)	Rivaroxaban 2.5 mg bid + aspirin 100 mg N=9152	Aspirin 100 mg N=9126	Rivaroxaban 2.5 mg bid + aspirin 100 mg	
			HR (95% CI)	<i>p</i> -value
1°: CV death, stroke, or MI	379 (4.1)	496 (5.4)	0.76 (0.66–0.86)	<0.001
CV death	160 (1.7)	203 (2.2)	0.78 (0.64–0.96)	0.02
Stroke	83 (0.9)	142 (1.6)	0.58 (0.44–0.76)	<0.001
MI	178 (1.9)	205 (2.2)	0.86 (0.70–1.05)	0.14

COMPASS: Secondary Endpoints

Mortality significantly lower?


Outcome	Rivaroxaban 2.5 mg bid + aspirin 100 mg	Aspirin 100 mg N=9126	Rivaroxaban 2.5 mg bid + aspirin 100 mg vs aspirin 100 mg		
	N=9152		HR (95% CI)	<i>p</i> -value	
CHD death, ischaemic stroke, MI, ALI	329 (3.6%)	450 (4.9%)	0.72 (0.63–0.83)	<0.001	
CV death, ischaemic stroke, MI, ALI	389 (4.3%)	516 (5.7%)	0.74 (0.65–0.85)	<0.001	
Mortality (all-cause)	313 (3.4%)	378 (4.1%)	0.82 (0.71–0.96)	0.01 §	

§ The threshold P value using the Hochberg procedure for each of the above comparisons was 0.0025

OSLER Program

Median follow-up of 11.1 months (IQR 11.0-12.8)

IQR = Interquartile range; HeFH = Heterozygous familial hypercholesterolemia; Hyperchol = Hypercholesterolemia

7% discontinued evolocumab early 96% completed follow-up

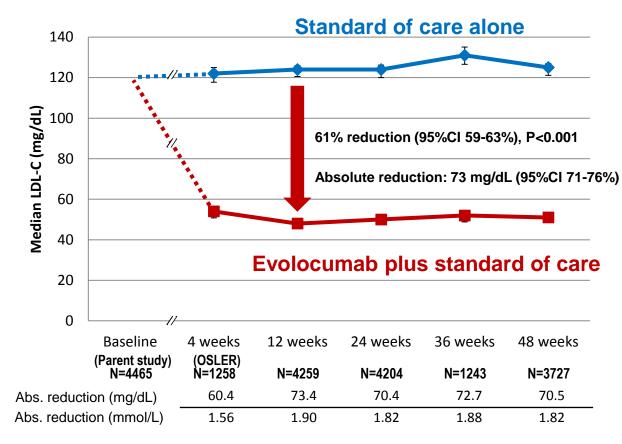
Data from the two trials (OSLER-1, OSLER-2) were combined

OSLER: Methods

- Evolocumab
 - Open-label randomized, controlled study; subcutaneous injections
 - Dosed 420 mg QM (OSLER-1); either 140 mg Q2W or 420 mg QM on the basis of patient choice (OSLER-2)
- Primary Endpoints:
 - Incidence of adverse events (AE) & tolerability
- Secondary Endpoints:
 - Percent change in LDL-C level & other lipid parameters
- CV clinical events (pre-specified, exploratory outcome):
 adjudicated by TIMI Study Group CEC*, blinded to treatment
 - Death
 - Coronary: myocardial infarction (MI), unstable angina (UA) requiring hospitalization, revascularization
 - Cerebrovascular: stroke or transient ischemic attack (TIA)
 - Heart failure (HF) requiring hospitalization

Patients had in-person clinic visits on day 1 and then quarterly at weeks 12, 24, 36 and 48. *Thrombolysis in Myocardial Infarction (TIMI) Study Group Clinical Events Committee (CEC)

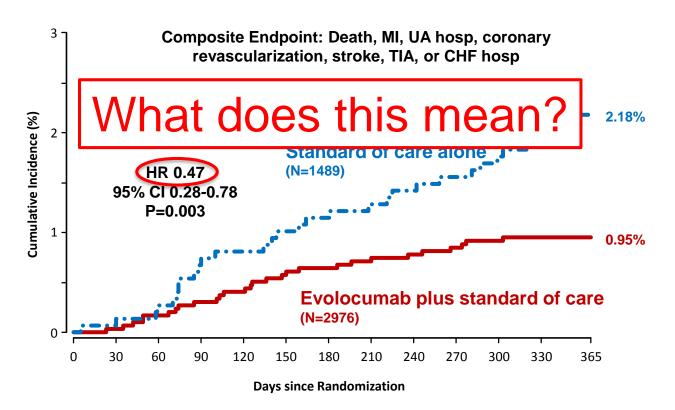
OSLER: Safety



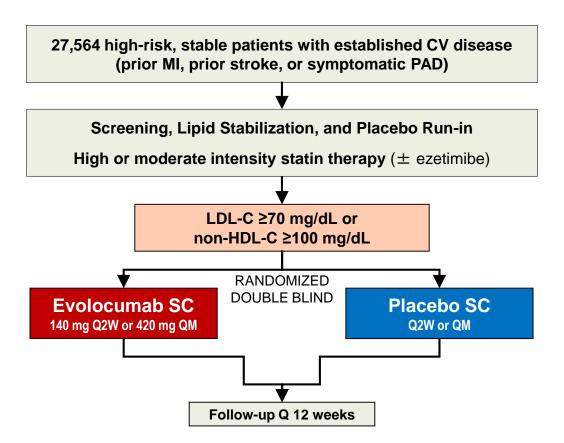
	Evolocumab + Standard of Care (N=2976)	Standard of Care alone (N=1489)
Adverse events	no. (%)	
Any	2060 (69.2)	965 (64.8)
Serious	222 (7.5)	111 (7.5)
Leading to discontinuation of evolocumab	71 (2.4)	n/a
Injection-site reactions	129 (4.3)	n/a
Muscle-related	190 (6.4)	90 (6.0)
Neurocognitive*	27 (0.9)	4 (0.3)
Other		
Arthralgia	137 (4.6)	48 (3.2)
Headache	106 (3.6)	32 (2.1)
Limb pain	99 (3.3)	32 (2.1)
Fatigue	83 (2.8)	15 (1.0)
Laboratory results	no. (%)	
ALT or AST >3×ULN	31 (1.0)	18 (1.2)
Creatine kinase >5×ULN	17 (0.6)	17 (1.1)

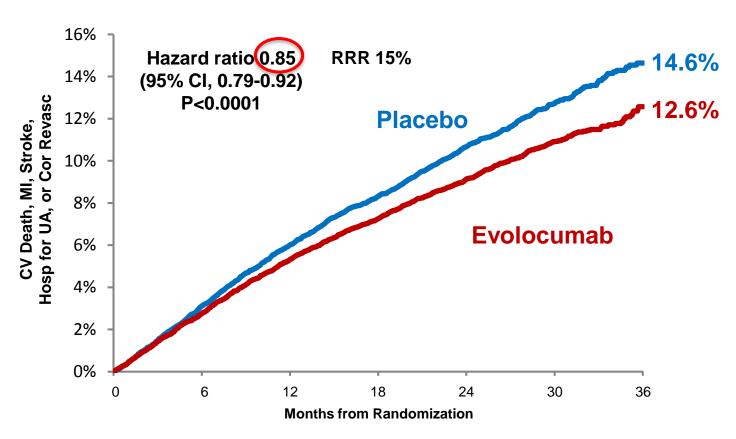
^{*}Neurocognitive events were delirium (including confusion), cognitive and attention disorders and disturbances, dementia and amnestic conditions, disturbances in thinking and perception, and mental impairment disorders.

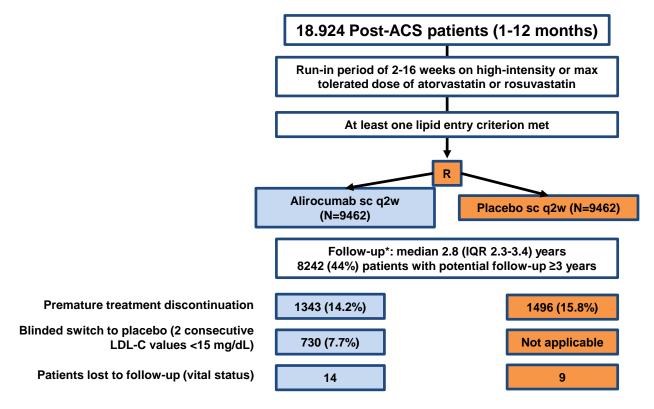
OSLER: LDL Cholesterol



The dashed line indicate that patients were receiving either evolocumab or placebo during the period from baseline to enrollment into OSLER.

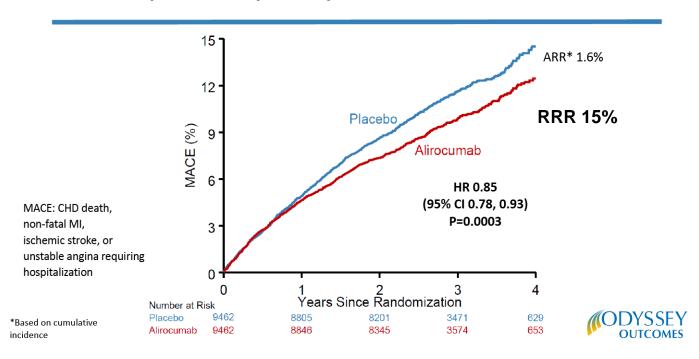

OSLER: Cardiovascular Outcomes


FOURIER: Trial Design


FOURIER: Primary Endpoint

Presented at ACC 2017, Washington, USA; Sabatine et al., N Engl J Med 2017;376:1713-1722

ODYSSEY OUTCOMES: Trial Design


Patient and investigator remained blinded to treatment and lipid levels for the entire duration of the study

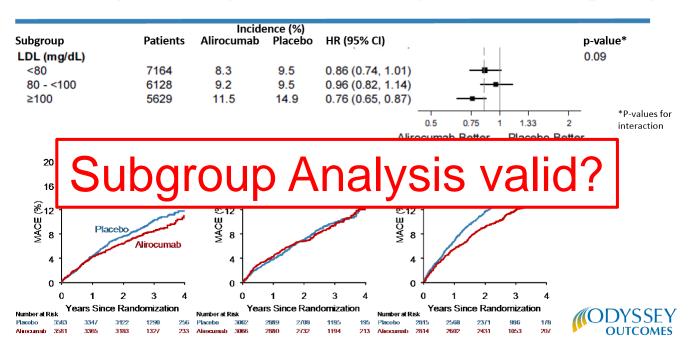
Presented at ACC 2018, Orlando, FL, USA; Schwartz et al., N Engl J Med. 2018;379:2097-107

^{*}Ascertainment was complete for 99.1% and 99.8% of potential patient-years of follow-up for the primary endpoint and all-cause death, respectively

ODYSSEY OUTCOMES: Primary Endpoint

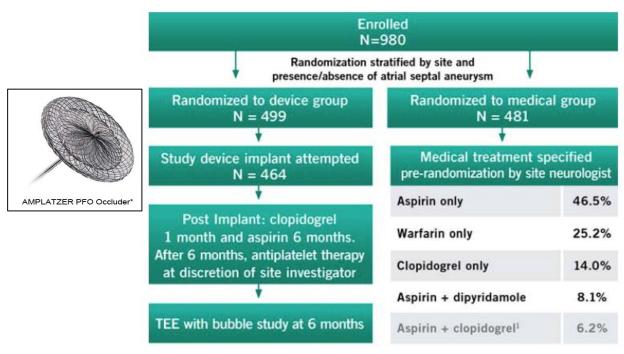
Primary Efficacy Endpoint: MACE

ODYSSEY OUTCOMES: Secondary Endpoints

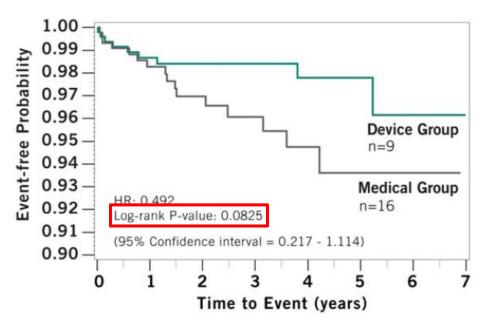

Main Secondary Efficacy Endpoints: Hierarchical Testing

Endpoint, n (%)	Alirocumab (N=9462)	Placebo (N=9462)	HR (95% CI)	Log-rank P-value			
CHD event	1199 (12 7)	13/19 (1/1 3)	0 88 (0 81 0 95)	0.001			
Mortality significantly lower?							
Death, MI, ischemic stroke	973 (10.3)	1126 (11.9)	0.86 (0.79, 0.93)	0.0003			
CHD death	205 (2.2)	222 (2.3)	0.92 (0.76, 1.11)	0.38			
CV death	240 (2.5)	271 (2.9)	0.88 (0.74, 1.05)	0.15			
All-cause death	334 (3.5)	392 (4.1)	0.85 (0.73, 0.98)	0.026*			

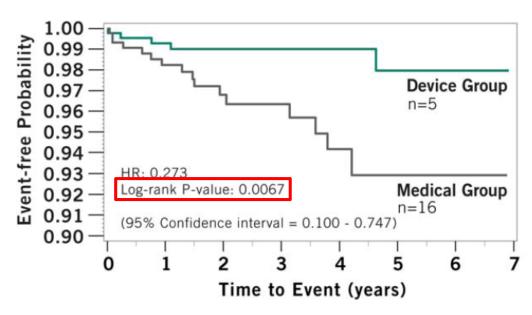
*Nominal P-value


ODYSSEY OUTCOMES: LDL-C Subgroup Analysis

Primary Efficacy in Main Prespecified Subgroups


Subject Distribution

Primary Endpoint Analysis – ITT Cohort 50.8% risk reduction of stroke in favor of device



3/9 device group patients did not have a device at time of endpoint stroke

Primary Endpoint Analysis – As Treated Cohort 72.7% risk reduction of stroke in favor of device

 The As Treated (AT) cohort demonstrates the treatment effect by classifying subjects into treatment groups according to the treatment actually received, regardless of the randomization assignment

Cox model used for analysis

Totality of Evidence and NNT

46.6%-72.7% risk reduction of stroke in favor of device

Totality of Evidence

ORIGINAL ARTICLE

Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke

Jeffrey L. Saver, M.D., John D. Carroll, M.D., David E. Thaler, M.D., Ph.D., Richard W. Smalling, M.D., Ph.D., Lee A. MacDonald, M.D., David S. Marks, M.D., and David L. Tirschwell, M.D., for the RESPECT Investigators*

N Engl J Med 2017; 377:1022-1032 | September 14, 2017 | DOI: 10.1056/NEJMoa1610057

CONCLUSIONS

Among adults who had had a cryptogenic ischemic stroke, closure of a PFO was associated with a lower rate of recurrent ischemic strokes than medical therapy alone during extended follow-up. (Funded by St. Jude Medical; RESPECT ClinicalTrials.gov number, NCT00465270.)

2 Year	70.4	1.60%	3.02%	
5 Year	23.9	2.21%	6.40%	

P-values: ITT Raw Count is calculated using Fisher's Exact test; all other P-values are calculated using log-rank test.
The NNT is the average number of subjects that need to be treated with the AMPLATZER™ PFO Occluder in order to prevent one stroke in the respective time intervals. The NNT is calculated as the reciprocal of the difference between the control arm and device arm event rates.
Calculated using the Kaolan-Meier estimated event rates for each treatment group.

PFO Closure vs. Medical Therapy: Meta-Analysis of Randomized Controlled Trials

Thank you for your attention!

